x+(1/2x-15)=180

Simple and best practice solution for x+(1/2x-15)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x+(1/2x-15)=180 equation:



x+(1/2x-15)=180
We move all terms to the left:
x+(1/2x-15)-(180)=0
Domain of the equation: 2x-15)!=0
x∈R
We get rid of parentheses
x+1/2x-15-180=0
We multiply all the terms by the denominator
x*2x-15*2x-180*2x+1=0
Wy multiply elements
2x^2-30x-360x+1=0
We add all the numbers together, and all the variables
2x^2-390x+1=0
a = 2; b = -390; c = +1;
Δ = b2-4ac
Δ = -3902-4·2·1
Δ = 152092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{152092}=\sqrt{4*38023}=\sqrt{4}*\sqrt{38023}=2\sqrt{38023}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-390)-2\sqrt{38023}}{2*2}=\frac{390-2\sqrt{38023}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-390)+2\sqrt{38023}}{2*2}=\frac{390+2\sqrt{38023}}{4} $

See similar equations:

| -4(n+14)=0 | | 2(d+1)-2=2 | | -3(f+6)+6=3 | | 288n^2-392=0 | | d=51*11/2 | | 2=m-5/2 | | 20m(m+1)=m-3 | | 3(g+2)+5=20 | | 9d+1=19 | | (8-11X)^2-3(8-11x)-18=0 | | 18-c=-1 | | 6-5x=13-(6x+5) | | 115=171-v | | 3(18x+10)=6(4x+20) | | (10x+2)(6x+4)=A | | -5(x+3)+2(×-1)=-14 | | 8-5x=6-8 | | 13-2(4x-8)=5 | | √x+59=x+3x+59=x+3 | | 40=-u+196 | | x^2−14x+17=0 | | 57-y=233 | | 12y+21=9y-27 | | 219-w=145 | | 21x+7-25x=3-8= | | 4x-36=6x-42 | | 252=55x | | 7x+18-6x=-3-10= | | 3y+3=8y-3 | | h−(−2.22)=−7.851 | | 91=3t-16t= | | 16-(n-9)=5(n+4) |

Equations solver categories