If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-7)=40
We move all terms to the left:
x(x-7)-(40)=0
We multiply parentheses
x^2-7x-40=0
a = 1; b = -7; c = -40;
Δ = b2-4ac
Δ = -72-4·1·(-40)
Δ = 209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{209}}{2*1}=\frac{7-\sqrt{209}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{209}}{2*1}=\frac{7+\sqrt{209}}{2} $
| 3(c-9)=2c-7 | | 3(24-2y)+12y=138 | | 12n+3=15n-8 | | 16w+24=360 | | 4z+3-z=7+2z-10 | | 3u=10u–35 | | (x)/7x=63 | | 5x-3x=18=4+4x-6 | | 11/6=n+7/9 | | 4p+40+7p=96=180 | | 4x+5+2x-1=16 | | 2(6+4x)=8x | | (5/8)^x=1 | | (x+7)3-6=x*2 | | 2x+8x-3x=21 | | (5/8)^x=(16/81) | | 9a-6=3-6/4a | | 2(x-6)+3=-3 | | 3a=18. | | 7x+2=17x+32 | | 4p+40=7p+96 | | p=53-14.50 | | 2s-34=4s-92 | | T=11x+4x | | u/10+5=9 | | 23/30=p | | 10c+3=13 | | 2x(48+2x)=180 | | y=769(1.0130)2 | | 10(v+2)=20 | | 20-5x=-5x+20 | | 40+(10x+30)=180 |