x(x-5x)=27(-x-4)

Simple and best practice solution for x(x-5x)=27(-x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x-5x)=27(-x-4) equation:



x(x-5x)=27(-x-4)
We move all terms to the left:
x(x-5x)-(27(-x-4))=0
We add all the numbers together, and all the variables
x(-4x)-(27(-1x-4))=0
We multiply parentheses
-4x^2-(27(-1x-4))=0
We calculate terms in parentheses: -(27(-1x-4)), so:
27(-1x-4)
We multiply parentheses
-27x-108
Back to the equation:
-(-27x-108)
We get rid of parentheses
-4x^2+27x+108=0
a = -4; b = 27; c = +108;
Δ = b2-4ac
Δ = 272-4·(-4)·108
Δ = 2457
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2457}=\sqrt{9*273}=\sqrt{9}*\sqrt{273}=3\sqrt{273}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(27)-3\sqrt{273}}{2*-4}=\frac{-27-3\sqrt{273}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(27)+3\sqrt{273}}{2*-4}=\frac{-27+3\sqrt{273}}{-8} $

See similar equations:

| 4^x+4^x+1=40 | | 8.5(4+3h)=h | | x^+5x+22=0 | | (5n+1)-3(2n+3)=2-9n+10) | | (6x-8)(2x+3)(4x-5)(3x+4)=x | | x+1/2x+2/3x+4=30 | | 1/2x-8=4x-1 | | 0.25t+9=8 | | 5+1+x=19 | | 5y-38=-4y+16 | | x/2+4=3x/5-3/4 | | 1+1/3x+7+1/3=15+1/3 | | 11x+5=5x-9 | | (n+1)/(n-1)=12 | | 21x2=100 | | x^2+120=20x | | x/2+10=-8 | | 5-2(x+3)=25 | | 25/16x^2=0 | | 60(2)^2-24(2)-27=x | | 2/5x+4/3=2 | | 2/3x+1/3=-1/3 | | 12x+20x=132 | | 3x+94+x+18+2×-4=180 | | 11x-10=9x+20 | | 9x+2-7x=20-7x | | -0.2(3x+15)=3(.8x-8) | | (x-9)^3=0 | | 6y^2+11y-6=0 | | -4(2x-6)=-8x-24 | | (10-x)=4x/5 | | (1-x)(2x-3)=5x |

Equations solver categories