If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-4)=56
We move all terms to the left:
x(x-4)-(56)=0
We multiply parentheses
x^2-4x-56=0
a = 1; b = -4; c = -56;
Δ = b2-4ac
Δ = -42-4·1·(-56)
Δ = 240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{240}=\sqrt{16*15}=\sqrt{16}*\sqrt{15}=4\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{15}}{2*1}=\frac{4-4\sqrt{15}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{15}}{2*1}=\frac{4+4\sqrt{15}}{2} $
| 3x+27=61 | | 50+2/7x=x | | y=34-9(2) | | 6-m=2.3 | | 2(25b^2+10b)=0 | | -4-9y=-1 | | 3x2-7x-5=0 | | 0,45x=61,20 | | c=16+43/45 | | Z=2z/9+6=3 | | Y=35y+1=56 | | 3/4(2x4)=9 | | 5y-2=5y-9 | | 5.6x168=3 | | (x+3)2=x2+6x+9 | | 2x-13/5-x-3/11=x-9/5+1 | | x-1+x-1+4x/(2x-1)+4x/(2x-1)=8 | | كىاىرهبلده؟X+2y=£2.802X+5y=£6.10 | | (x+3)^2-5=0 | | Y^2=10^2-x^2 | | -14+12=-2(x+8) | | (9/16x)^2+(x^2)=H^2 | | Y=0.25x+5.41 | | 7m+19/2=12 | | 4x-5.47=-1.55 | | 9w+5=4.7w=7.6 | | 0=9x^2-6x-5 | | 13x+17+8x+16=180 | | h-3,5=9 | | 10=4.905*t^2 | | 0=9x^2+30x+17 | | (x-4)(x+8)+11=0 |