If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-3)+2x=-(x-5)=4
We move all terms to the left:
x(x-3)+2x-(-(x-5))=0
We add all the numbers together, and all the variables
2x+x(x-3)-(-(x-5))=0
We multiply parentheses
x^2+2x-3x-(-(x-5))=0
We calculate terms in parentheses: -(-(x-5)), so:We add all the numbers together, and all the variables
-(x-5)
We get rid of parentheses
-x+5
We add all the numbers together, and all the variables
-1x+5
Back to the equation:
-(-1x+5)
x^2-1x-(-1x+5)=0
We get rid of parentheses
x^2-1x+1x-5=0
We add all the numbers together, and all the variables
x^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $
| 3x-2/4x+6=5/7 | | 13x-7+10x=16 | | -147-7x=78+8x | | w-65=-17 | | 25+5k=125+1k | | -1-4x=-5(3x+2)+8x | | (2x7)=3 | | −4+w+17−23w=16 | | c+6.4=17.43 | | v/5-1.2=13.7 | | x/30-1/6=18 | | 11x-144=2x+81 | | 5.2(2a-1)=7a+14,6 | | x+27=9.8 | | -3y+9=5y-3 | | 6-m/4=20 | | 6x-21-4=-1 | | 7+2(-28x+-5)=1(-10x+8)+311 | | 2x+4x+7=7x+6+7 | | 5x-20=15x+45 | | 77=-7r | | 11x+14+12x-16=20x+10 | | 515=1310x-13 | | 1/7(4r+28)=2(r+2) | | -14+6y=-56 | | 8/9p+6=30 | | -24=2x-10=-6 | | 11x-106=224-x | | 15+9x-7=98 | | 515=1310x+13 | | 2+1/4x=4 | | 3x+(-20)=-29 |