If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x-12)=40
We move all terms to the left:
x(x-12)-(40)=0
We multiply parentheses
x^2-12x-40=0
a = 1; b = -12; c = -40;
Δ = b2-4ac
Δ = -122-4·1·(-40)
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-4\sqrt{19}}{2*1}=\frac{12-4\sqrt{19}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+4\sqrt{19}}{2*1}=\frac{12+4\sqrt{19}}{2} $
| 10+4=-2(4x-7) | | (5z+9)(1+z)=0 | | 4(x-5)=3(x+5) | | 8+(5-x)3=17 | | 2x-7x+3=9x+17+7 | | -x+6-x=-2 | | y=-5.7-31.2 | | 5(2x+9)=-7+2 | | b/14+1/7=17 | | 2(4x-14)=3(2-3x) | | -3(x+1)+5x=-2x+17 | | 7{n-1}=49 | | 36=4(2x+5) | | z^2+(3)=(8)^2 | | 8=2x+36 | | (-1.5)^2+z=22 | | -14+3x-2x=32-1x-16 | | 8x-15=2x-27-3x | | 2=13-4x | | (-4.3)^2+z=11 | | 160x+3=195x-2 | | -8-3(w+3)=4(w+11)-7w | | 4=2/3x-1 | | 8=2x-2+8x | | 7y+2=5y+7=57 | | x+(x+30)+(x-31)=110 | | W+2w+8+w+2+8=88 | | √7f-33+3=f | | 2q2+3q+1=0 | | 30-12x=6(-x-3) | | 4=2/3x+1 | | 2a+9=-5a+30 |