If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2q^2+3q+1=0
a = 2; b = 3; c = +1;
Δ = b2-4ac
Δ = 32-4·2·1
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-1}{2*2}=\frac{-4}{4} =-1 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+1}{2*2}=\frac{-2}{4} =-1/2 $
| 30-12x=6(-x-3) | | 4=2/3x+1 | | 2a+9=-5a+30 | | 18.4+12y=68.8 | | (3x+18)+(9x+27)=99 | | 4(x-5)=(x+5) | | 2k/15=3 | | 6x+8=-3(2x-7) | | x-17=-76 | | Y-12=X2-7x | | X*4-2x*2-3=0 | | -41+12x=7+49 | | 3y+3=39 | | Y-12=x^2-7x | | c+42+c-5=180 | | 11-2q=53 | | 5x+5+x=5 | | 3/4x-6=3+1/2x | | 2(3x-4)=6x | | -23=40-3n | | 35=3n+5 | | 5x+4+x=5 | | 15k-2=3 | | 9=13-4x | | 4n(12n-6)=6(-4+5n)+18n | | 3+15=2k | | 800=1/5x | | 15+2k=3 | | 2=3r+4r | | V=64714-64714*0.14*t | | 2x+4+2x=16 | | 6-4(3x+2)=-38 |