If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+42)=2160
We move all terms to the left:
x(x+42)-(2160)=0
We multiply parentheses
x^2+42x-2160=0
a = 1; b = 42; c = -2160;
Δ = b2-4ac
Δ = 422-4·1·(-2160)
Δ = 10404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10404}=102$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-102}{2*1}=\frac{-144}{2} =-72 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+102}{2*1}=\frac{60}{2} =30 $
| x=3.2=4.1 | | 3x+2(x+3)=4x–7 | | -10x-11+14x=-39 | | 3x+-4+4x=38 | | m9=11 | | -5x-8+3x=6 | | f=-4 | | |2b-12|=16 | | 1/2(x+2)=5x+2 | | 18=9x-14+5 | | Y+(13)a=7 | | .-26d=-364 | | 3(x-4)+12(x-9)=4x+14 | | x-{-1}=11 | | -8-2(1-9a)=35 | | 6x—20=-8 | | 90+7x+8+33=180 | | j+4=2j−6 | | (-k/5)-4=7 | | 2=d/15 | | 8=r+33/9 | | 2x+7+x=20 | | 15x22=-7x+18 | | 9u+14=6u-2 | | x(2x+5)=54 | | -91+2x+12x=159 | | -5x3=12 | | 6(5x+1)=25x | | 17-11q=6 | | 5(2c+7)-3c=7(c+5)* | | 9x2-12x-140=0 | | 1x/4=x+3 |