If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-12x-140=0
a = 9; b = -12; c = -140;
Δ = b2-4ac
Δ = -122-4·9·(-140)
Δ = 5184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5184}=72$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-72}{2*9}=\frac{-60}{18} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+72}{2*9}=\frac{84}{18} =4+2/3 $
| 1x/4=x+3 | | 25x=6(5x+1) | | -x-11-2x=7 | | 7y²*2y⁻²= | | 2n=1=1n=0 | | -x/4-8=-12 | | n=1n=0n | | 3(m-)=9 | | 17–11q=6 | | n=4908n/45 | | x2+49=14x | | n=1n=0 | | 3(-x-2)}{2}=9 | | 2x-8+3=17-9x | | 2/3=1/3x-(-4/3) | | 20(20-x)=240 | | 8(5x-6)+5x=-10+7x | | -2+21x+80+19x+2=180 | | x+1=11x+3 | | –9+3f=6f | | v2+ 16=19 | | 1/3x-2/5=4 | | (7x-10)=(12x+19) | | 6m-12=-18 | | 10-(2x-3)=43 | | 3x+4-7x=32 | | -6(x+4)=18-6x | | 2(n+7)=-6 | | x(x-2)=82 | | -3s(s-2)=12s | | 4x-6=6x-36 | | 8+4+2x=7 |