x(x+4)=7(4x-7)

Simple and best practice solution for x(x+4)=7(4x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+4)=7(4x-7) equation:



x(x+4)=7(4x-7)
We move all terms to the left:
x(x+4)-(7(4x-7))=0
We multiply parentheses
x^2+4x-(7(4x-7))=0
We calculate terms in parentheses: -(7(4x-7)), so:
7(4x-7)
We multiply parentheses
28x-49
Back to the equation:
-(28x-49)
We get rid of parentheses
x^2+4x-28x+49=0
We add all the numbers together, and all the variables
x^2-24x+49=0
a = 1; b = -24; c = +49;
Δ = b2-4ac
Δ = -242-4·1·49
Δ = 380
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{380}=\sqrt{4*95}=\sqrt{4}*\sqrt{95}=2\sqrt{95}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-2\sqrt{95}}{2*1}=\frac{24-2\sqrt{95}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+2\sqrt{95}}{2*1}=\frac{24+2\sqrt{95}}{2} $

See similar equations:

| 17/8=x/7= | | 3m^2+2m+0=0 | | 4x^2-19x=30 | | -4d=-80 | | 5v+10=3(v+2) | | 3/10•y=15 | | Y=-1.6x-1.1 | | 1/x-1/4=21 | | 3/7x-8=3 | | 4(w+6)-6w=8 | | 4x+7x-4=117 | | 4x+38=x+11 | | (x-4)=(x2-8x+16) | | 2x+7=34÷2 | | 8a+5a-7a+2a=8a | | -2/3x-4=4-2(x+2) | | 2w-23=-5(w+6) | | -3+7=3x-17 | | -3x-21=x+3 | | F(x)=-x^2-16 | | 5x+17=x+1 | | 6(8)-8q=56 | | X+11÷10=9÷10x | | 4x+41=x+14 | | 9x=117x=12 | | x+0=2x+3 | | x=7+1/3 | | y^2+10=-6y | | x+22=4x=10 | | 7x+70=3x+34 | | -x+24=2x+9 | | F=6/5(n-72) |

Equations solver categories