(x-4)=(x2-8x+16)

Simple and best practice solution for (x-4)=(x2-8x+16) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (x-4)=(x2-8x+16) equation:



(x-4)=(x2-8x+16)
We move all terms to the left:
(x-4)-((x2-8x+16))=0
We add all the numbers together, and all the variables
-((+x^2-8x+16))+(x-4)=0
We get rid of parentheses
-((+x^2-8x+16))+x-4=0
We calculate terms in parentheses: -((+x^2-8x+16)), so:
(+x^2-8x+16)
We get rid of parentheses
x^2-8x+16
Back to the equation:
-(x^2-8x+16)
We add all the numbers together, and all the variables
x-(x^2-8x+16)-4=0
We get rid of parentheses
-x^2+x+8x-16-4=0
We add all the numbers together, and all the variables
-1x^2+9x-20=0
a = -1; b = 9; c = -20;
Δ = b2-4ac
Δ = 92-4·(-1)·(-20)
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-1}{2*-1}=\frac{-10}{-2} =+5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+1}{2*-1}=\frac{-8}{-2} =+4 $

See similar equations:

| 2x+7=34÷2 | | 8a+5a-7a+2a=8a | | -2/3x-4=4-2(x+2) | | 2w-23=-5(w+6) | | -3+7=3x-17 | | -3x-21=x+3 | | F(x)=-x^2-16 | | 5x+17=x+1 | | 6(8)-8q=56 | | X+11÷10=9÷10x | | 4x+41=x+14 | | 9x=117x=12 | | x+0=2x+3 | | x=7+1/3 | | y^2+10=-6y | | x+22=4x=10 | | 7x+70=3x+34 | | -x+24=2x+9 | | F=6/5(n-72) | | -x+62=3x+30 | | 3h=52 | | 2x^2+21x-9.5=0 | | n+172+36=360 | | 45+123+n=360 | | S(x)=x/(.25x+.75) | | 37=5v-8 | | 135+n+75=360 | | F(-2)=3x-14 | | X^2+60x-30=0 | | 51+112+n+27+162=540 | | 8(x+1)-6=4x+4(1+x) | | 5+12=4t-1 |

Equations solver categories