If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+4)-84=0
We multiply parentheses
x^2+4x-84=0
a = 1; b = 4; c = -84;
Δ = b2-4ac
Δ = 42-4·1·(-84)
Δ = 352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{352}=\sqrt{16*22}=\sqrt{16}*\sqrt{22}=4\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{22}}{2*1}=\frac{-4-4\sqrt{22}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{22}}{2*1}=\frac{-4+4\sqrt{22}}{2} $
| 9z-12=5+8z | | F(x)=9/5*50+32 | | (y+8)-3=16. | | F(x)=9/5(50)+32 | | F(x)=9/5(50+32 | | (4x+5)(6x+10)=115 | | -3a²+24a-21=0 | | F(x)=9/5.50+32 | | g-14=30 | | p/4+10=5 | | x=10+20=180 | | 13-2x-14=5 | | 4+7b=-108 | | 13-2x+14=5 | | 16(3)-4n=29 | | 78.009=19.65+p | | 2x-8+5-1x=0 | | -9(x+5)=-145 | | -2x-2=x^2-9x+8 | | 3n-2n=10 | | 31t^2+100t=50 | | 0=6x+6-10x | | 6x+6-10x=0 | | x^2+49x+49=0 | | X+18=3(x-6) | | 6x-18=3(2x-3)-(2x+6) | | 6(t+2)+8=44 | | 6x+x=6-10x | | (5x+8)°+(3x-18)°+x°=180° | | X/4+(x+5)/3=10 | | 3.5f=14 | | −7=-3+a−3+a |