If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+3)=61
We move all terms to the left:
x(x+3)-(61)=0
We multiply parentheses
x^2+3x-61=0
a = 1; b = 3; c = -61;
Δ = b2-4ac
Δ = 32-4·1·(-61)
Δ = 253
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{253}}{2*1}=\frac{-3-\sqrt{253}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{253}}{2*1}=\frac{-3+\sqrt{253}}{2} $
| -4p-1=27 | | 9x=150+3x | | .25x+9=3x-2 | | 27=-4p-1 | | 8x+16=184 | | (2x-5)=3+2 | | 39=2u+5(u-2) | | 2–3(4-x)=5(2-x)+4 | | X+5-2x=15 | | -5n-6n=8-8n-8 | | 2(5-8k)-13=6(1-k)-12 | | 4(2m+3+6m)=204 | | 3.5m-4=2.5m-2 | | 6=3m+2 | | -12p+39=11(p+4 | | 7(x+1)=x-2/4 | | 7p-5=5p+9 | | 6^2x-76^x+6=0 | | 5(2x+6)=8 | | 7x-4+x=-12 | | 8t^2-8t-30=0 | | 3x2+x=4 | | 4(x+2)-6=2(x+5) | | 1/3x-(x+1/5)=1/15(x+1) | | (2x-4)^2=-16 | | 7r+3=32 | | y={3-5)(3+2) | | 14=3/7x-7 | | -7=4x-1-6+x | | (7x-9)+(x-4)=0 | | 2(w+1)+4w=3(2w-1)+1 | | 6(t+4)=66 |