x(x+2)=55+5(x+x+2)

Simple and best practice solution for x(x+2)=55+5(x+x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(x+2)=55+5(x+x+2) equation:



x(x+2)=55+5(x+x+2)
We move all terms to the left:
x(x+2)-(55+5(x+x+2))=0
We add all the numbers together, and all the variables
x(x+2)-(55+5(2x+2))=0
We multiply parentheses
x^2+2x-(55+5(2x+2))=0
We calculate terms in parentheses: -(55+5(2x+2)), so:
55+5(2x+2)
determiningTheFunctionDomain 5(2x+2)+55
We multiply parentheses
10x+10+55
We add all the numbers together, and all the variables
10x+65
Back to the equation:
-(10x+65)
We get rid of parentheses
x^2+2x-10x-65=0
We add all the numbers together, and all the variables
x^2-8x-65=0
a = 1; b = -8; c = -65;
Δ = b2-4ac
Δ = -82-4·1·(-65)
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{324}=18$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-18}{2*1}=\frac{-10}{2} =-5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+18}{2*1}=\frac{26}{2} =13 $

See similar equations:

| 10x-19=3x+3 | | 5x-37=2x+20 | | 8x-3=47 | | 8x×3=47 | | 7+5(3)^x-2=142 | | x+4/2+x-1/8=x+0,75 | | |x-4|-8=-3 | | 3x-2/5=4-(x+2/3) | | 3x-2/5=4-(x+2) | | 6-x^2/8=-4 | | Z-m=0 | | 20+7y=20 | | -4x+21x+105=20 | | 0.2x-0.5(2x+5)=-0.9(x+2) | | x-5/x-4/6=-1/x | | 2(x-39)=3x | | 1/2x+16=4x+2 | | 4(x-1)=x-1=0 | | 2-(3x-4)=2×-9 | | 20-3v=5v+4 | | -6(0.1x+0.2)-9=-0.3 | | (y-6)^2-72=0 | | 0.2x+8.9=7.8 | | 3x|2=5 | | -227=7(-5×+7)+x | | 5(-3x-2)-(x-3)=4(x+5)+13 | | (3x+9)^2=9x^2+54x+81 | | 0.2x+5.9=4.8 | | 4/x+3/5=10/x | | 2(-4+x)=x-1/8 | | 2(x-3)=3(x+8 | | n(n-1)(n-2)(n-3)(n-4)=0 |

Equations solver categories