If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(x+1800)=41800
We move all terms to the left:
x(x+1800)-(41800)=0
We multiply parentheses
x^2+1800x-41800=0
a = 1; b = 1800; c = -41800;
Δ = b2-4ac
Δ = 18002-4·1·(-41800)
Δ = 3407200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3407200}=\sqrt{400*8518}=\sqrt{400}*\sqrt{8518}=20\sqrt{8518}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1800)-20\sqrt{8518}}{2*1}=\frac{-1800-20\sqrt{8518}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1800)+20\sqrt{8518}}{2*1}=\frac{-1800+20\sqrt{8518}}{2} $
| 4x/x^2-36+x/x-6=2/x+6 | | 8x=7x+45 | | X+(x-9)=39 | | ×^2+14x+40=0 | | (x-2)(x+0.8)=32 | | 9x=39x | | 3x^2+12x+81=0 | | 3-6x=15x | | -3x-6=-90 | | -3x-18=-90 | | 12x-27+3=175 | | S=2r-11 | | 2x+12=2⋅(x+6) | | 12x-27x+3=175x | | 4x=162x=8 | | 0.5 x−7=0.3 (x−12) | | x-29=21 | | X/2+2x=40 | | 3/4y−6=1/8y+4 | | 7=12+x−4 | | (8i+8)(9i+9)=0 | | X^3+4x^2+5x-20=0 | | d2–2d=-8 | | d2–2d=8 | | F(x)=7^x | | -7*f/2=-1 | | 3c+6=42 | | —15=8z+7 | | —=8z | | -122-3=(-2-8x)-8x | | -3(5v-2)+9v=6(v+2) | | 104=r=(-32) |