x(4-2x)=2(2x-8)

Simple and best practice solution for x(4-2x)=2(2x-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(4-2x)=2(2x-8) equation:



x(4-2x)=2(2x-8)
We move all terms to the left:
x(4-2x)-(2(2x-8))=0
We add all the numbers together, and all the variables
x(-2x+4)-(2(2x-8))=0
We multiply parentheses
-2x^2+4x-(2(2x-8))=0
We calculate terms in parentheses: -(2(2x-8)), so:
2(2x-8)
We multiply parentheses
4x-16
Back to the equation:
-(4x-16)
We get rid of parentheses
-2x^2+4x-4x+16=0
We add all the numbers together, and all the variables
-2x^2+16=0
a = -2; b = 0; c = +16;
Δ = b2-4ac
Δ = 02-4·(-2)·16
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*-2}=\frac{0-8\sqrt{2}}{-4} =-\frac{8\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*-2}=\frac{0+8\sqrt{2}}{-4} =\frac{8\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-1} $

See similar equations:

| 18.75=3b^2 | | 12.x-5=55+5 | | -3x+24=-3 | | 16x+5+50=180 | | 9(3x+2)=33(12+x) | | 9(3x+2)=33(12-x) | | 10.402.50=9500+9500r | | 13x-3x+6x+68=180 | | x/2/5=1/2 | | -16(-2)+4y=8 | | 45(2x+7)=(4x+1) | | -2x+7x=-14 | | 10(7x-1)=22(3x+1) | | s+2.5=61 | | 27(x-3)=21(x-1) | | 9d-5(2d-6)=-20 | | 2x(18-5x)=10 | | 4x=48.4 | | 9.9=0.3x | | -36/g=-6 | | x/5.9=3.5 | | 2-4x=5-8x+-2 | | 23+e=20 | | 20-e=23 | | b/14=13 | | S+2x1/2=61 | | 775=1.50n-500 | | 10-2x=8+9x | | 5/2n-4=16 | | 3x-+17=-16 | | -5x=32+-20x+48=180 | | G+44=54.g |

Equations solver categories