If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(3x+6)=180
We move all terms to the left:
x(3x+6)-(180)=0
We multiply parentheses
3x^2+6x-180=0
a = 3; b = 6; c = -180;
Δ = b2-4ac
Δ = 62-4·3·(-180)
Δ = 2196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2196}=\sqrt{36*61}=\sqrt{36}*\sqrt{61}=6\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{61}}{2*3}=\frac{-6-6\sqrt{61}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{61}}{2*3}=\frac{-6+6\sqrt{61}}{6} $
| 58+x+x=90 | | x+(3x+6)=180 | | x-1.8=1-0.4x | | x-86+x=90 | | n2+5=23 | | x/3=1630 | | Y^2=6-x^2 | | 2^2x+3.2^x+2=0 | | 2(2d+3)=30 | | 6c^2-3=51 | | 6c^-3=51 | | 5x+11+4x-20=180 | | 27/9=x/11.5 | | 5x-7=112 | | a+81=225 | | 7x+52x=-10 | | z+81=180 | | 2/9x-3=7/9+2 | | a+5776=9025 | | 1-0.5x=1.5x-1 | | z+74=180 | | 11=w–5 | | -2/5(15-10z)=3z+2(z-5) | | 0.44x=30 | | 6(t+5)= | | -9+8x=4x+3 | | (4y-9)(5+y)=0 | | 7x+-6=4x+-21 | | 0.2*2.2x=30 | | 3x-2≥=14 | | 2x=≤16 | | 7x-6=8x=27 |