x(2x-3)=-1+3x(1-x)

Simple and best practice solution for x(2x-3)=-1+3x(1-x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(2x-3)=-1+3x(1-x) equation:



x(2x-3)=-1+3x(1-x)
We move all terms to the left:
x(2x-3)-(-1+3x(1-x))=0
We add all the numbers together, and all the variables
x(2x-3)-(-1+3x(-1x+1))=0
We multiply parentheses
2x^2-3x-(-1+3x(-1x+1))=0
We calculate terms in parentheses: -(-1+3x(-1x+1)), so:
-1+3x(-1x+1)
determiningTheFunctionDomain 3x(-1x+1)-1
We multiply parentheses
-3x^2+3x-1
Back to the equation:
-(-3x^2+3x-1)
We get rid of parentheses
2x^2+3x^2-3x-3x+1=0
We add all the numbers together, and all the variables
5x^2-6x+1=0
a = 5; b = -6; c = +1;
Δ = b2-4ac
Δ = -62-4·5·1
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-4}{2*5}=\frac{2}{10} =1/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+4}{2*5}=\frac{10}{10} =1 $

See similar equations:

| 5c+4=2(c+5) | | C+(3x3-3)=21 | | J=15/3x5-4+4 | | 3/36=18/x | | 2/3×m=1/2 | | 60x-52=220x | | 6=7x+5x^2 | | 5(3h*5)=48h | | (12/7)q^2-(3/2)q+7=0 | | 9-5(4n-8)=7n-(-9-3n) | | (12/7)q^2-3/2q+7=0 | | 4(5x+3)=39 | | 12/7q^2-3/2Q+7=0 | | x+x^2=199 | | 4(2n-7=12 | | 3(2x+6)=2×+4+4x | | 7x+7=4-(9x-8) | | x+(x-14)=20 | | 10x-3/12=2 | | 2(4x+2)-2(x-2)=-(2x+12) | | 4z/9-4=-6 | | 18x+6=-30 | | 20x+6=-14 | | 58-4v=5v+4 | | 70/100=100/x | | 5x+18+2x=38+42 | | z/7-5=10 | | 3(x-6)-5x=-38 | | 7s-24=60 | | 18=4(y+8)-6y | | 12=-5x+8 | | 27/2b+3=3 |

Equations solver categories