If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2x+9)=810
We move all terms to the left:
x(2x+9)-(810)=0
We multiply parentheses
2x^2+9x-810=0
a = 2; b = 9; c = -810;
Δ = b2-4ac
Δ = 92-4·2·(-810)
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-81}{2*2}=\frac{-90}{4} =-22+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+81}{2*2}=\frac{72}{4} =18 $
| 5-7c=26 | | 2(t-4)+4=2(2t-6) | | P(m)=−0.4m+20 | | C=S/(1+r) | | 3/4(x-8)=7.5 | | 3(x+1)+x+3=18 | | 3x-7(4-x)=19 | | 2.x-4=22 | | 3x/2+5=8 | | 6/u=-7 | | -8=-4/w | | x(10/16)+x(3/16)=39 | | Y+4y+29y=0,y(0)=2,y(0)=1 | | x5/8+x3/16=39 | | Y+4y+29y=0 | | 2y-59=11 | | 3.7x-2.1=6.3x+5.8 | | t^2-4=45 | | x^2=x-5=0 | | 436,400+p=472,100 | | 15^7x=68 | | f(-3)=-3^2+3(-3) | | n/8 =11/5 | | 5x2-21=39 | | -5x+11=-5x+10 | | 5c=c-(c-8) | | 9x+7-6x=6x-9+x | | 10x+6x-2=30 | | (-20)-x=104 | | 32x^2-63x+32=0 | | x^2+4x-8=-7 | | -7(2y-3)+7y=7(y+2) |