If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x(2)+5x-19x=-4
We move all terms to the left:
x(2)+5x-19x-(-4)=0
We add all the numbers together, and all the variables
x^2-14x+4=0
a = 1; b = -14; c = +4;
Δ = b2-4ac
Δ = -142-4·1·4
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-6\sqrt{5}}{2*1}=\frac{14-6\sqrt{5}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+6\sqrt{5}}{2*1}=\frac{14+6\sqrt{5}}{2} $
| (x)=3x−52 | | x+4/5=1/5 | | -3(x-4)+2x-7=-(x-6) | | 2(3-6y)=-3(6+4y) | | -(2x+3)=-2x+7 | | -10x+24+24x=-6+24 | | -5(3p-5)+3=-5+3(-7p+1) | | 5(7-6r)=-17 | | Y=2/5x+6 | | 2(x−4)=2x+10−18 | | -3x+2=-2x+7 | | 3x+6=x–12 | | 7x+3=2x+5(x+1)-2 | | 5(2x-4)-6=x+6x-6+3 | | 8x-7+3x+10=x | | -4-5(1+8x)=-21 | | 10-2(3x-9)=-14 | | 5x+3+137=180 | | 4(c-15)+6=18 | | 6x+2x−8=8(x−1) | | 27x^2-10x-35=0 | | x3-3=3 | | (0)=-14x-2 | | -12x+144=-9(7x+1) | | 18=5m+3* | | 90=2x+5x+6 | | 5(2x−2)=10x+10 | | (5)=-14x-2 | | -18/3=3x/3 | | 2x-(4x-2)=2x+1 | | (x^2-5x+5)(x^2-5x-3)=20 | | (4)=-14x-2 |