x(0,5x+1,5)=0,25(4x+1,5)

Simple and best practice solution for x(0,5x+1,5)=0,25(4x+1,5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x(0,5x+1,5)=0,25(4x+1,5) equation:



x(0.5x+1.5)=0.25(4x+1.5)
We move all terms to the left:
x(0.5x+1.5)-(0.25(4x+1.5))=0
We multiply parentheses
0x^2+1.5x-(0.25(4x+1.5))=0
We calculate terms in parentheses: -(0.25(4x+1.5)), so:
0.25(4x+1.5)
We multiply parentheses
x+0.375
Back to the equation:
-(x+0.375)
We add all the numbers together, and all the variables
x^2+1.5x-(x+0.375)=0
We get rid of parentheses
x^2+1.5x-x-0.375=0
We add all the numbers together, and all the variables
x^2+0.5x-0.375=0
a = 1; b = 0.5; c = -0.375;
Δ = b2-4ac
Δ = 0.52-4·1·(-0.375)
Δ = 1.75
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.5)-\sqrt{1.75}}{2*1}=\frac{-0.5-\sqrt{1.75}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.5)+\sqrt{1.75}}{2*1}=\frac{-0.5+\sqrt{1.75}}{2} $

See similar equations:

| 3x-15=-8x-4 | | 3x-15=8x-4 | | 8m=5m−1 | | 2x=61+x | | -1/4x-4=-20 | | 7-(b+5)=8b-2 | | 21/20x=11 | | -3/4y=9+y | | 9m-36=0 | | -0.25x-4=-20 | | 3x^2+x–2= | | 0.8x+12=0.8x+12 | | 5=-3t/5+2 | | 3x^2+x–2=0 | | 0.8x=12=x-12 | | 5z=39-8z | | f(-14)=8(-14)+15 | | -1/2(4x-10)=5-2x | | 11x-8=5x+7 | | 3^x-2+1=28 | | 2(2y-1)-2(2y)=10 | | 2(x+3)-5x=3x-(x+7) | | 12.2z-13.4z=-179.2 | | 12.2z-13.4z=179.2 | | -18=4(-3x+3) | | -23x+-14=14x−23 | | X+.65x=293750 | | 14x+23=14x−23 | | 5c+11=7c-8 | | 40x+4x=5x | | -14x+23=14x−23 | | 14x+-23=14x−23 |

Equations solver categories