If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w2=43
We move all terms to the left:
w2-(43)=0
We add all the numbers together, and all the variables
w^2-43=0
a = 1; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·1·(-43)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{43}}{2*1}=\frac{0-2\sqrt{43}}{2} =-\frac{2\sqrt{43}}{2} =-\sqrt{43} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{43}}{2*1}=\frac{0+2\sqrt{43}}{2} =\frac{2\sqrt{43}}{2} =\sqrt{43} $
| 25^x=23*5^x+50 | | 4x/8=3/8 | | (2-3D)(4d-3D)=0 | | k/2-1=4 | | –4.4d+9.48=7.44−7.8d | | 3x/2=(x-1+2x-(-3)x) | | (t)=140 | | 7(23–y)=84; | | x+8=-3x+0 | | 15=-5t+45 | | 40=-5t+45 | | 3x/2=x-1+2x-(1-4)x | | 3x+2(x-23)=119 | | 7(23–y)=84 | | 12x+41=137 | | 2x+75°+65°+x+3x=360 | | 2a–6=0 | | 3^(2x-1)=75 | | 5(x-13)+2x=75 | | -0.10(13)+0.15x=0.05(x-10) | | .343-174x=43x-308 | | 0.14y+0.09(y+4000)=1970 | | -2.87-5.6h=-9.5-6.9h | | 3x+14/4+x+48/6=17 | | -2.8g-1.08=-3.7g-5.31 | | -4w=-5-3w | | 10-5j=-9j-10+6j | | -8=-3w/5 | | 2.28+2.6u=6.4u | | 5z/3z+1=3-2z/3z | | (5/3)z+1=3-(2/3)z | | 3a/4=-12 |