If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w(3w+1)=154
We move all terms to the left:
w(3w+1)-(154)=0
We multiply parentheses
3w^2+w-154=0
a = 3; b = 1; c = -154;
Δ = b2-4ac
Δ = 12-4·3·(-154)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-43}{2*3}=\frac{-44}{6} =-7+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+43}{2*3}=\frac{42}{6} =7 $
| -6-3x=-21 | | 3y+14=52 | | 8x+9=37 | | 2c+25=114 | | 5x0.9=2 | | x/7+3.6=4.2 | | x/12-6=23 | | 0.75=0.125x | | x/−9=3 | | 5^2(x+1)=125 | | 90.47=0.6x-54.31 | | x-16-3(x+28)=12-6(x-20) | | 17.8=6x-20 | | 7^(3n+6)=1/343 | | 2/3(x+3)=72 | | 2c+21=3c | | 16=6-3x | | .02x=100 | | 4(x+4)-3(x+1)=2 | | 4x–12=88 | | 11c=c+70 | | Gx7=45 | | 3(x+5)-2(-x+5)=15 | | 3x/4+5=-9 | | 3x+16+11x-18=360 | | 2x()=6x | | -5x+10=24+2x | | 2=4−–2v | | x/8+16=54 | | 3n-25=180 | | s+42=5s-46 | | x^2+-16x=57 |