If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v=44v^2
We move all terms to the left:
v-(44v^2)=0
determiningTheFunctionDomain -44v^2+v=0
a = -44; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-44)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-44}=\frac{-2}{-88} =1/44 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-44}=\frac{0}{-88} =0 $
| v=44v2 | | v=44v2 | | 9p-15=-3p+2 | | 40+30+2x=180 | | 1/4(2(x-1)10)=x | | 1/4x(2(x-1)10)=x | | 74=104-5x | | 12−5x=−34 | | (x-3)÷9=11 | | 6(a−3)+5(a−2)=4 | | 12•2^x-7=24 | | 3x-14+6x-12+90=180 | | 21.25n=30 | | 5m-20=45 | | 5m-20=45 | | 5m-20=45 | | g−485=81 | | g−485=81 | | 540=f−396 | | 540=f−396 | | 20j=300 | | 112.9+10=34+9.9x | | 593=u−43 | | z+15=302 | | -5y+3=2(4y+12 | | 7x-3(2x+15=-18 | | 3{3-y}+1=31 | | 3{3-y}+1=31 | | 3{3-y}+1=31 | | 2=11+3{m+3} | | 0.14y=560 | | 0.14y=560 |