If it's not what You are looking for type in the equation solver your own equation and let us solve it.
v2+2v-23=0
We add all the numbers together, and all the variables
v^2+2v-23=0
a = 1; b = 2; c = -23;
Δ = b2-4ac
Δ = 22-4·1·(-23)
Δ = 96
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{96}=\sqrt{16*6}=\sqrt{16}*\sqrt{6}=4\sqrt{6}$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-4\sqrt{6}}{2*1}=\frac{-2-4\sqrt{6}}{2} $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+4\sqrt{6}}{2*1}=\frac{-2+4\sqrt{6}}{2} $
| (5n+4)+136=180 | | -2x+6=-x+4 | | x^2+12x+5=-9 | | 40=-4(z-4) | | 5.7g+10=2.7g+10 | | -2x=200 | | 4.x=80 | | -2(8-x)+6=-25+5 | | 4x+7=4x- | | x/6x-2x=24 | | -96=-4(4x-4) | | -8(7x+2)+8(x+-4)=-5(-9+x)+-93 | | 7/6/x=5/6/1/3 | | 2/3y-7/5=-1/2 | | -4r+5=5–4r | | -2u+2u+-7u=14 | | (6x-4)+(7x-10)+47=180 | | 15x^2-9.75x+1.25=0 | | 9x−2(3x−2)=10 | | 3x+6=2x+18=24 | | 10h+h+h-12h+2h=14 | | -5-(-9x)=8-3 | | 2x−12=6x | | 5n-15n+14n+13n-15n=16 | | -46x+48x=1/ | | 0.5m+5=11.50 | | -12=-32+4z | | 15x2–6x+3=0 | | 12x-4+12x-4=42 | | 0.25(−b+2)=12 | | -106=2(3-8v) | | -31x-41x=12 |