If it's not what You are looking for type in the equation solver your own equation and let us solve it.
u2=10
We move all terms to the left:
u2-(10)=0
We add all the numbers together, and all the variables
u^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| 5t+-2=-32 | | d+28=82 | | -32^(-2)+x=0 | | (z-1)^4=-81 | | 0=-32x^-2+x | | 7y-2=44 | | x+47+x+82+75=180 | | 2x(4x+15)=180 | | 100-2x=80-2x | | u+61=16u+68=180 | | u+61=16u+68 | | 4(2b-24)+11=8b-13 | | 8x+58+90=180 | | y-6.58=8.52 | | 7+9=2y+9 | | 4x+0.5=2x+0.58 | | -2(6x+1)=4(x-5)+2 | | 18-y=54 | | h^2+10h+16=0 | | –5u+3=–8+6u | | x+58+52+77=180 | | 36-2x=2x-14 | | 2+5(x-6)=40 | | J^2-13j+42=0 | | 3x(3x+2)=50 | | 4x-9=-40 | | 52=8u | | 3x+4x+5x=60 | | x+x/4+90=180 | | 4x+10+x=360 | | 81+41+6x-8=180 | | x-15=86 |