If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x(4x+15)=180
We move all terms to the left:
2x(4x+15)-(180)=0
We multiply parentheses
8x^2+30x-180=0
a = 8; b = 30; c = -180;
Δ = b2-4ac
Δ = 302-4·8·(-180)
Δ = 6660
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6660}=\sqrt{36*185}=\sqrt{36}*\sqrt{185}=6\sqrt{185}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{185}}{2*8}=\frac{-30-6\sqrt{185}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{185}}{2*8}=\frac{-30+6\sqrt{185}}{16} $
| 100-2x=80-2x | | u+61=16u+68=180 | | u+61=16u+68 | | 4(2b-24)+11=8b-13 | | 8x+58+90=180 | | y-6.58=8.52 | | 7+9=2y+9 | | 4x+0.5=2x+0.58 | | -2(6x+1)=4(x-5)+2 | | 18-y=54 | | h^2+10h+16=0 | | –5u+3=–8+6u | | x+58+52+77=180 | | 36-2x=2x-14 | | 2+5(x-6)=40 | | J^2-13j+42=0 | | 3x(3x+2)=50 | | 4x-9=-40 | | 52=8u | | 3x+4x+5x=60 | | x+x/4+90=180 | | 4x+10+x=360 | | 81+41+6x-8=180 | | x-15=86 | | 50x6=265 | | 15(15+10k)=51 (15+10k) | | 7*m=6 | | -14-3(x+10)=7(2x+4)+. | | 3(4d+1)-9d=6(2=d) | | 6(1-3m)=-8(-2+5)-4 | | −6x+9=−9 | | 4+y/6=-3/68 |