If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t=61+-6t+-5t^2
We move all terms to the left:
t-(61+-6t+-5t^2)=0
We use the square of the difference formula
-(61-6t-5t^2)+t=0
We get rid of parentheses
5t^2+6t+t-61=0
We add all the numbers together, and all the variables
5t^2+7t-61=0
a = 5; b = 7; c = -61;
Δ = b2-4ac
Δ = 72-4·5·(-61)
Δ = 1269
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1269}=\sqrt{9*141}=\sqrt{9}*\sqrt{141}=3\sqrt{141}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-3\sqrt{141}}{2*5}=\frac{-7-3\sqrt{141}}{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+3\sqrt{141}}{2*5}=\frac{-7+3\sqrt{141}}{10} $
| f+7/3=3 | | 3x+2x=800 | | x-9=-3x=15 | | -24x=-3x | | 38=5(v+6)-7v | | 17x-3=75° | | 246+g=360 | | 9=-2(x-4) | | 4(b+5)/3=(3b-35)/6 | | 15.50-c=3.00 | | 215+g=360 | | 0=-0.006x^2+.8x-130000 | | D=9.8t^2-15t+100 | | -48÷.5=x | | -48÷1/2=x | | (6-y)14+y(17)=99 | | 3(4h+5)+2=14+3(5-2) | | -4(12-5x)=-8(-3+2x) | | -6(n-4)=12 | | -7(-3+x)=14 | | (6-y)14+y17=99 | | -74=-10-8k | | -(3)1/3=-1/2g | | -(3)1/3=1/2g | | 326+t=360 | | A=10+4b | | 119=17v | | 218+g=360 | | (x)/(2)+1=6 | | 4x-4=7x-2 | | -2=m/5 | | 268+g=360 |