t2+16=19

Simple and best practice solution for t2+16=19 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t2+16=19 equation:



t2+16=19
We move all terms to the left:
t2+16-(19)=0
We add all the numbers together, and all the variables
t^2-3=0
a = 1; b = 0; c = -3;
Δ = b2-4ac
Δ = 02-4·1·(-3)
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*1}=\frac{0-2\sqrt{3}}{2} =-\frac{2\sqrt{3}}{2} =-\sqrt{3} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*1}=\frac{0+2\sqrt{3}}{2} =\frac{2\sqrt{3}}{2} =\sqrt{3} $

See similar equations:

| 15g-8=14g-8 | | t2+ 16=19 | | 4=10+–2s | | 6(x+4)=6x+8-4x | | 7p+19+17=180 | | .y+3y=-18 | | 180=132+8x | | 12u+4=401 | | -6v+3v=24 | | 5=4+n/14 | | 4x-(2x-4)=2x+5-11 | | x+x+12=x+x+4+x+6 | | 2x–2x=18 | | 45=3x+16 | | 2y–2y=18 | | 3r+5=50 | | 26=w/5-8 | | -4x+8-2=-2(10+2x) | | 0.5p=9.5 | | 50=-16t^2+20t+2.5 | | -255=x-50 | | 3(8-x)+6=54 | | 6=1/3(9x+12) | | x/2-11=13 | | 16-2x+-8.8x-4-6x=180 | | £11=-5x-2 | | 3(2x+3)=4x+13 | | 3x+2x+10=40 | | 4x-10+3x+10=180;x=25 | | 204=h-33 | | v-4=6v+1 | | 10b+25+16b-67+7b+6=180 |

Equations solver categories