If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t2+15t+-200=0
We add all the numbers together, and all the variables
t^2+15t=0
a = 1; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·1·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*1}=\frac{-30}{2} =-15 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*1}=\frac{0}{2} =0 $
| 16=4x^2-20x+24 | | 3/4x+36=45 | | (x^2-3x-10)(2x+3)=0 | | X+(x+3)+(2x+3)=51 | | X(x+8)=-8 | | (2x+3)=24 | | 7r-1=10r-19 | | 5h=3h+2 | | .5=4s-21 | | 10y+10=11y-1 | | 3/2+x=5/6x-4/3 | | 6+x2=6-x5 | | 9x=11−2x | | x+6=x/2+2 | | -2(4t-5)+5t=8t-5 | | -7(4x-2)+2=-28x+16 | | 7x-3=7(x+6) | | 25x-2×5x-15=0 | | 2(7+3t)+5=7 | | 5+1.53d-1.5=0.5 | | 7x^2+3x=92 | | ((2x+8)/5)=3x-1 | | 1/2+2/5k-1=1/5k+k | | (8x-8)=(7x+8) | | (2)/(7)x+(4)/(7)=-(8)/(7) | | 4•(x-5)=-12 | | 4x+3=(2(x-3 | | (2/7)x+(4/7)=-(8/7) | | 5/6x=45=50 | | m•11=88 | | 2(x+7)-34=4x-11x+4(9x-1) | | 4m-3(m+2)=9 |