t(t+3)-t(t-7)=2(t-7)-5(t-3)

Simple and best practice solution for t(t+3)-t(t-7)=2(t-7)-5(t-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t(t+3)-t(t-7)=2(t-7)-5(t-3) equation:



t(t+3)-t(t-7)=2(t-7)-5(t-3)
We move all terms to the left:
t(t+3)-t(t-7)-(2(t-7)-5(t-3))=0
We multiply parentheses
t^2-t^2+3t+7t-(2(t-7)-5(t-3))=0
We calculate terms in parentheses: -(2(t-7)-5(t-3)), so:
2(t-7)-5(t-3)
We multiply parentheses
2t-5t-14+15
We add all the numbers together, and all the variables
-3t+1
Back to the equation:
-(-3t+1)
We add all the numbers together, and all the variables
10t-(-3t+1)=0
We get rid of parentheses
10t+3t-1=0
We add all the numbers together, and all the variables
13t-1=0
We move all terms containing t to the left, all other terms to the right
13t=1
t=1/13
t=1/13

See similar equations:

| -26=x+19 | | -x+6-1=5-x | | 3y=8-122 | | .33333333(d+9)=-12 | | 5h-60=8h | | t(t+3)-t(t-5)=4(t-5)-7(t-3) | | 2x^2+20+52=0 | | 54÷3=p+(p×2)+(p+4) | | -69-7x=-10x | | 4(x)-4=3(x)+7 | | 3/x-4-2/1-x=0 | | (z+6)^2=-11 | | 7(r+3)-19=8(r-8)+63 | | 12(2x-6)=3(8x+8) | | 4-2x=3x-4 | | 2m=18-5 | | -5(7x+8)=-35+40 | | 0.06(7t+6)=0.42(t+1)-0.06 | | 56=p÷(p×2)+(p+4) | | 2m=12-5 | | 120=3x+4x+x | | 2x-3=3x=2+x | | 5​(2x-6​)=10​(x-6​) | | 3r+0.5=37/2 | | 12-q=3q+3 | | 17t+6=52 | | -6x+18=6-(4x+9) | | 2x^2-14x-34=0 | | 3​(a-6​)=6a-​(3a-18​) | | 54=p+(p×2)+(p+4) | | 12x-18=x-60 | | x+5=4x+ |

Equations solver categories