If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t(8t+5)=0
We multiply parentheses
8t^2+5t=0
a = 8; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·8·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*8}=\frac{-10}{16} =-5/8 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*8}=\frac{0}{16} =0 $
| q-25=-4 | | (3x+68)=(2x-13) | | 3x+68=2x-13 | | 45=2x-10 | | M=4.5-1.5n | | X+1/3=3x+2/5 | | 8x+4=-3x-37 | | 1.5-0.5n-n=2 | | 64=3*3^(3x-5) | | 1/3x+5=4x-2 | | 2(x-3)=(x+3)+2x | | 2(x+5)+(x+40)=180 | | Y-5=-1/4x | | 3/4-2x=1/2 | | 2(x+10)+(3x-40)=180 | | 1-4z=-6-9z+6z | | x+27=35-2 | | x27=35-2 | | 129=9y-63 | | 3-4(2m-5)=71 | | 18-2f=2f+4 | | -(x+3/10=8 | | 6(2x+3)=3(2x+1)-2(3x+2) | | 3n-47=90 | | C=35.25-0.07x | | (y-60)=16 | | 8=x.6x= | | 60+8x+6+90=180 | | 74+3x+49=180 | | 80+5x+12+38=180 | | 75+8x+15+42=180 | | 59+2x+16+79=180 |