t(2)=12-5

Simple and best practice solution for t(2)=12-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for t(2)=12-5 equation:



t(2)=12-5
We move all terms to the left:
t(2)-(12-5)=0
We add all the numbers together, and all the variables
t2-7=0
We add all the numbers together, and all the variables
t^2-7=0
a = 1; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·1·(-7)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{7}}{2*1}=\frac{0-2\sqrt{7}}{2} =-\frac{2\sqrt{7}}{2} =-\sqrt{7} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{7}}{2*1}=\frac{0+2\sqrt{7}}{2} =\frac{2\sqrt{7}}{2} =\sqrt{7} $

See similar equations:

| x+7.9=29.96 | | 3^x=3/2x+2 | | 9x+12=-8x-18 | | X^3=3/2x+2 | | 26+90+2x=90 | | -10x-14=-5x+1 | | n-(-9)=-12 | | -3(2w+5)+7w=5(w-11 | | 10-2(6x-4)=-2 | | 8=6f-3=11 | | 26+90+2x=180 | | (80+5)7=x | | 3915=45(p+25) | | 4(2-(3(c+10-2(c+1)))=-2c | | 85+31+3x=180 | | x8=x | | (4x-52)+(x+16)+(180-(7x-106))=180 | | 3915=25p+45 | | 3x+(5x+18)=90 | | 9-5x=2x-26 | | 3,915=25p+45 | | 2x-11+2x=(4x-5)+6 | | 48+4n-n=192 | | x=5/8-10 | | 5+6/2=n | | 3,915=45(p+25) | | x^2-x-38=4 | | 0.25x^2+2x-20=0 | | X^2-2x+70=3 | | 2x-1122x=4(4x-5)+6 | | 3,915=45p+25 | | 25/c=10-c |

Equations solver categories