If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+13q=0
We add all the numbers together, and all the variables
q^2+13q=0
a = 1; b = 13; c = 0;
Δ = b2-4ac
Δ = 132-4·1·0
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-13}{2*1}=\frac{-26}{2} =-13 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+13}{2*1}=\frac{0}{2} =0 $
| (2y+50)=(3y+20) | | -20=-8v | | -8b+6=134 | | D=5m-2 | | -43x^2=-44032 | | 6/x-5=2x+3/14 | | x14=2x-1 | | r^2+r^2=324 | | 20x+100=480 | | 58-x=242 | | -x+167=119 | | 2.3y=y-4 | | 81+9y=18y | | -8=1+3(x-3) | | -8=1+3x(x-3) | | -10x+3(3x+4)+1=-3(7x+3) | | 10000x=100000 | | 6x=6-6(x-1) | | 15x-2=-17 | | 0.7r=21 | | 2=(x-13)/3 | | 8-1y=0 | | -5=6x+19 | | 2x-5=9x-12 | | (x-13)/2=4 | | 11x-28=-28 | | (x-1)^=13 | | (x-32)/2=-29 | | 5.15+6x=72.95 | | 3(-2x+1)-6=-8x+11 | | 4z-45=z+51 | | 13p+76=19p+52 |