If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q2+11q=0
We add all the numbers together, and all the variables
q^2+11q=0
a = 1; b = 11; c = 0;
Δ = b2-4ac
Δ = 112-4·1·0
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-11}{2*1}=\frac{-22}{2} =-11 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+11}{2*1}=\frac{0}{2} =0 $
| 2u+8=42 | | X-0.2x=85 | | 14h=32 | | v/4+12=32 | | 6+6/6x6=42 | | h+43=89 | | A(x)=(2x+8)(2x+10) | | t+1/2=4/5 | | -5(9+x)=-5 | | 59.97=j+5 | | 5(z-0.52))=8 | | -24=3(2x-4 | | 2u=38.6 | | v+1/4=18/4 | | 3000+100x=5400+40x | | 10/x=116/16 | | 10/x=16/116 | | 1/2+s=2/3 | | 3q=96.9 | | p+2/5=1/2 | | 3z2+2=10 | | 9w+24=6(w+1) | | b+2/5=6/10 | | -5(2-8)=10+5m | | h4/5=42/3 | | b/21=12 | | p+8.2=21.8 | | b/11=22 | | 9750=2^d | | 2(5t-6)=23t+7 | | n/9=22 | | 12+4(9-5x)=13-15x |