p-36=8-1/3p

Simple and best practice solution for p-36=8-1/3p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for p-36=8-1/3p equation:



p-36=8-1/3p
We move all terms to the left:
p-36-(8-1/3p)=0
Domain of the equation: 3p)!=0
p!=0/1
p!=0
p∈R
We add all the numbers together, and all the variables
p-(-1/3p+8)-36=0
We get rid of parentheses
p+1/3p-8-36=0
We multiply all the terms by the denominator
p*3p-8*3p-36*3p+1=0
Wy multiply elements
3p^2-24p-108p+1=0
We add all the numbers together, and all the variables
3p^2-132p+1=0
a = 3; b = -132; c = +1;
Δ = b2-4ac
Δ = -1322-4·3·1
Δ = 17412
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{17412}=\sqrt{4*4353}=\sqrt{4}*\sqrt{4353}=2\sqrt{4353}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-132)-2\sqrt{4353}}{2*3}=\frac{132-2\sqrt{4353}}{6} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-132)+2\sqrt{4353}}{2*3}=\frac{132+2\sqrt{4353}}{6} $

See similar equations:

| 2-6x-3-2x=0 | | 3(2x+7)=-36+9 | | -6+v(÷6)=-3 | | -41+12x=7x+49 | | -1/2=4x-3 | | 6-x+6x+10=-4 | | -.5=4x-3 | | 35=5x= | | -2+3x+4=2(-2+x) | | 4x-1+7x+8=6 | | -1/2y-7=11 | | -16.12-19.5p-14.61=-17.08-18.8p | | 4p-2=-3 | | -3(x+1)=4x+4-2x | | -6+v(6)=-3 | | 3c-8(2c+3)=-6(2c+5) | | 3(x-4)/2=3(x+3)/0 | | X=-11/8+y=-11/4 | | -6+v÷(6)=-3 | | x/7-29=10 | | -12-5x=-3x12 | | 5(x+3)=-2(x+3) | | m+18=14+m | | Y=-0.25n²+6n-27 | | .750n+16=2-1/8n | | -48x-9=66-10x | | 16.04+.11x=16.79+.09x | | 108(2t+2.50)=13.80 | | -6+v÷6=-3 | | 7(n-7)-3(3n+10)=3n-9+2-n | | |2y+5|=11 | | 2d+3=28 |

Equations solver categories