If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=45
We move all terms to the left:
n2-(45)=0
We add all the numbers together, and all the variables
n^2-45=0
a = 1; b = 0; c = -45;
Δ = b2-4ac
Δ = 02-4·1·(-45)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*1}=\frac{0-6\sqrt{5}}{2} =-\frac{6\sqrt{5}}{2} =-3\sqrt{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*1}=\frac{0+6\sqrt{5}}{2} =\frac{6\sqrt{5}}{2} =3\sqrt{5} $
| 35x=40x-40-10 | | 1/3x-6=2/3x+10 | | 6(1+3a)+3(3+3a)=6a+6a | | 7=f/7 | | 3(t+4)–2(2t+3)=-4 | | 4(2x+1)=5(x-5) | | 7=2a=15 | | 42-5x=9x-112 | | 4^(4a+3)=9 | | x+20/x-18=17 | | (2x+3)=51 | | 12-3n=2 | | 5+35x=-2+7x | | X+13=3x-97 | | 6=6(x–4) | | (1-y)(4y-6)=0 | | 2x-73=41 | | 3n-(2=n) | | 2x=6=14 | | 2(x+(2x-3))=42 | | 4x2+5x–9=0 | | 3x+5=x=11 | | 6x-15=2x+11= | | (3x-5)^2=16 | | 4-x=80 | | 14-14k=2-2k | | n-6-7n=7(1-4n)+3(7n-6) | | 11x+18=14x | | ½(m–3)=12 | | X=2x/5+18 | | 16x-42=9x+14 | | 15x+8=21x-10 |