If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=18
We move all terms to the left:
n2-(18)=0
We add all the numbers together, and all the variables
n^2-18=0
a = 1; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·1·(-18)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*1}=\frac{0-6\sqrt{2}}{2} =-\frac{6\sqrt{2}}{2} =-3\sqrt{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*1}=\frac{0+6\sqrt{2}}{2} =\frac{6\sqrt{2}}{2} =3\sqrt{2} $
| X2+5x+19=0 | | 20-13p=-20-9p | | -2(8p+5)=86 | | 8(1/2x–61/2)=4(1/2x+30) | | y+–214=–681 | | 2x^2+34=-22 | | z/7=63 | | 6(17)+7=11y-32 | | 4x+1=2x+7- | | 7z−6=8z | | Y2+y=2 | | 3(17)-16=11y-32 | | 2a+4a=-24 | | x=21x2/3 | | 3x=–24 | | 3x^2-8=-47 | | 2(8x+2)+2=8x(-3x-2)+8 | | 1-r=7-2r | | x/12+2=-5 | | N2=-18n-72 | | s/21=26 | | 14y+49=8y+120 | | y-6y=3y | | -4x=-420 | | 9+y/10=-3 | | -4x=64 | | s21=26 | | 15/40=9/x | | 13.51+5.9k=13.2k-17.05 | | x-(x*0.3)=270 | | 4c+-5=27 | | 2/3(9+x)=-5(4-×) |