2(8x+2)+2=8x(-3x-2)+8

Simple and best practice solution for 2(8x+2)+2=8x(-3x-2)+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2(8x+2)+2=8x(-3x-2)+8 equation:



2(8x+2)+2=8x(-3x-2)+8
We move all terms to the left:
2(8x+2)+2-(8x(-3x-2)+8)=0
We multiply parentheses
16x-(8x(-3x-2)+8)+4+2=0
We calculate terms in parentheses: -(8x(-3x-2)+8), so:
8x(-3x-2)+8
We multiply parentheses
-24x^2-16x+8
Back to the equation:
-(-24x^2-16x+8)
We add all the numbers together, and all the variables
-(-24x^2-16x+8)+16x+6=0
We get rid of parentheses
24x^2+16x+16x-8+6=0
We add all the numbers together, and all the variables
24x^2+32x-2=0
a = 24; b = 32; c = -2;
Δ = b2-4ac
Δ = 322-4·24·(-2)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{19}}{2*24}=\frac{-32-8\sqrt{19}}{48} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{19}}{2*24}=\frac{-32+8\sqrt{19}}{48} $

See similar equations:

| 1-r=7-2r | | x/12+2=-5 | | N2=-18n-72 | | s/21=26 | | 14y+49=8y+120 | | y-6y=3y | | -4x=-420 | | 9+y/10=-3 | | -4x=64 | | s21=26 | | 15/40=9/x | | 13.51+5.9k=13.2k-17.05 | | x-(x*0.3)=270 | | 4c+-5=27 | | 2/3(9+x)=-5(4-×) | | x-4=≤3 | | 9x=22.5/9 | | 81/2x–6½=41/2x+30 | | 1w=880 | | 3x+5(x-2)=6(x=4) | | 5y+4=3y+2 | | 18x-44=8x-44 | | 8(1/2x–6½)=4(1/2x+30) | | 2/3(9+x)=-5(4-x)2) | | 3x+6x+3=21 | | 9/5x+6/5x+18=-36 | | 2x12=3 | | 3+2x=13=3x | | Y^3+9y^2+23y+15=0 | | 10y2-250=0 | | X^2-64x-180=0 | | 14v+6=2(5+7v)–4 |

Equations solver categories