If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2-7n-18=0
We add all the numbers together, and all the variables
n^2-7n-18=0
a = 1; b = -7; c = -18;
Δ = b2-4ac
Δ = -72-4·1·(-18)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-11}{2*1}=\frac{-4}{2} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+11}{2*1}=\frac{18}{2} =9 $
| G(x)=14x-6 | | 3v^2-28v+32=0 | | -7=-2x+3 | | 2(x+5)-5x=10-3 | | 14-5q=-6 | | X+22+9x+18=180 | | 6x+31=9x-26 | | j+-2.84=-8.84 | | F(x)=16x-30 | | p2+p-20=0 | | 6x-3+117=90 | | X+22=9x+18 | | 4v+32=12v | | 12(-2)=-3y+12 | | 12(3)=-3y+12 | | -15=3v | | 12(0)=-3y+12 | | 5-10x-3x2=0 | | 7x+19-6x=15 | | 4(-2)+y=12 | | 6x-15=5x+9 | | -5t=-32 | | (X+1)+(x+2)+(x+3)=42 | | 11=4(x-5)-9 | | 2+18=c | | -x+19=5(x+5) | | 4m+2=3m | | x2^+5x=-6 | | -15.6=-2q | | x+14=4(x+5) | | (6,2)m=1 | | ƒ(x)=1/2-x. |