If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5-10x-3x^2=0
a = -3; b = -10; c = +5;
Δ = b2-4ac
Δ = -102-4·(-3)·5
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4\sqrt{10}}{2*-3}=\frac{10-4\sqrt{10}}{-6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4\sqrt{10}}{2*-3}=\frac{10+4\sqrt{10}}{-6} $
| 7x+19-6x=15 | | 4(-2)+y=12 | | 6x-15=5x+9 | | -5t=-32 | | (X+1)+(x+2)+(x+3)=42 | | 11=4(x-5)-9 | | 2+18=c | | -x+19=5(x+5) | | 4m+2=3m | | x2^+5x=-6 | | -15.6=-2q | | x+14=4(x+5) | | (6,2)m=1 | | ƒ(x)=1/2-x. | | (x+7)²=(X+7)(3x+4) | | 1/2x+4=-5/2x+10 | | -0.5x+1.58=-0.7x+4.98 | | 6x6+9=-3x6-21-6 | | 6x-3+2x=45 | | 24=u+7u | | 5a+13=18 | | 7x-52=87 | | 5-3x^2=-31 | | 8+5c=7c–2 | | -2x+1+3x=7 | | 9z-35=46 | | 4a+4=-3(a-6) | | -0.9x+9.11=-0.5x+8.71 | | 52.952-x=64+132.07-63.8 | | 3(-2)-3+-2-3=2(-2)-1+2(-2)-1+2(-2)=x | | 3/2b+5=20−b | | 1/4x+13=0.25(2x-32) |