If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+5n=4876
We move all terms to the left:
n2+5n-(4876)=0
We add all the numbers together, and all the variables
n^2+5n-4876=0
a = 1; b = 5; c = -4876;
Δ = b2-4ac
Δ = 52-4·1·(-4876)
Δ = 19529
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{19529}}{2*1}=\frac{-5-\sqrt{19529}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{19529}}{2*1}=\frac{-5+\sqrt{19529}}{2} $
| 3c+28=8c-7 | | 7v-9v=21 | | 0.55=y/13 | | 7^x+8=35 | | n2+5n=66 | | -37=7t | | -16n-6n-5n+-19=8 | | z−43=1 | | 12j+-14j=12 | | 20+4y=32 | | 3(x+5)=x+2(2+x) | | 19x-15x-3x-1=16 | | t/20=3/4 | | (3x+6)+(2x+12)=30 | | 18–0.12x=30 | | 3+w/2=-1 | | 12g+-8g=-12 | | -5(n+2)=60 | | 7x/12=380 | | 2/13=m/39 | | 7z-17z+3z−-6=-8 | | (4x+16)°+(2x034)°=80 | | 6+3x=2x-1=5 | | 11=25x | | 5x+2(6x-8)=114 | | 22=5y+7 | | 15s-7s=8 | | -3(g+-1)+-4=-4 | | (5x-10)+(3x)=40 | | -2(b+5)=20 | | 180=10(n-2) | | 3^x+2=27^2x |