If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+14n+33=9
We move all terms to the left:
n2+14n+33-(9)=0
We add all the numbers together, and all the variables
n^2+14n+24=0
a = 1; b = 14; c = +24;
Δ = b2-4ac
Δ = 142-4·1·24
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10}{2*1}=\frac{-24}{2} =-12 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10}{2*1}=\frac{-4}{2} =-2 $
| 180=(7x-19)+(3x+14) | | 180=(7x-19)-(3x+14) | | 10n+.3=0.1n+.3 | | 3(x+1)^2+9=84 | | 6(n+1)+3=2(3n-1)+11 | | 6(n+1)+3=2(3n−1)+11 | | 8x+2+8x-3=95 | | 20=4b+5+7 | | 4x+21+40=7x-2 | | 6x-26=54/4x | | 7x-2+40=4x+21 | | x+47+x+32=115 | | x+92+x+42=110 | | (2x)+(3x-24)-(4x+11)=180 | | x+92+110=x+42 | | 4x+12+80=2x+16 | | 10=(x+2)(x-1) | | x+32+115=x+47 | | 12(9t-5)=5t-8 | | x+47+115=x+32 | | -7x-1;x=-9 | | 1.3x+2x=-11 | | 1.3x+2=-11 | | -6r-3(1+5r)=165 | | -3h-12;h=9 | | -x+8;x=-4 | | 13x-15=-15+8x | | 4x+3-1=(2x+2)-2x | | 4x+14+110=2x+2 | | .35x=5.25 | | (4x+11)+(2x)+(3x-24)=180 | | 6g-1;g=-7 |