n*(n-1)/2=36

Simple and best practice solution for n*(n-1)/2=36 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n*(n-1)/2=36 equation:



n(n-1)/2=36
We move all terms to the left:
n(n-1)/2-(36)=0
We multiply all the terms by the denominator
n(n-1)-36*2=0
We add all the numbers together, and all the variables
n(n-1)-72=0
We multiply parentheses
n^2-1n-72=0
a = 1; b = -1; c = -72;
Δ = b2-4ac
Δ = -12-4·1·(-72)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{289}=17$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-17}{2*1}=\frac{-16}{2} =-8 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+17}{2*1}=\frac{18}{2} =9 $

See similar equations:

| 70=8x+48 | | 4y+6y+16+y+43=180 | | 4y+5y+1=180 | | 2x+16+3x-11=180 | | 8-7(4x-2)=-28+14 | | 8(2-1)-2(8x-3)=2 | | 2x+14+82=180 | | 10-4(3x-1)=40 | | 102+(2a-9)+(a+4)=180 | | 3b=-5b-40 | | -4(2+v)=-20 | | 6+4p=2(p-3)-2(p-2) | | 11p-4/5=10p+9/5 | | 45+4b+5b-45=180 | | 7x+30=8x+9 | | 3(-10t+-3)+6t=75 | | 2(6x14)=40 | | x+11+4x-10+9x+11=180 | | 2v+17+(v+20)+(v+19)=180 | | a/10-2.1=5.1 | | y/4+17=36 | | 86+43+18a-3=180 | | -6=4z+10 | | y=-300+1200 | | x-2+x-14=180 | | x-2=x-14 | | 4x+9+3x-4=180 | | x+20=152 | | 2x+30=7x-7 | | 2x-26+x+25=180 | | 6x^2+24x=-42 | | 3.1g+6=1.1g+10. |

Equations solver categories