If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n-3)=133
We move all terms to the left:
n(n-3)-(133)=0
We multiply parentheses
n^2-3n-133=0
a = 1; b = -3; c = -133;
Δ = b2-4ac
Δ = -32-4·1·(-133)
Δ = 541
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-\sqrt{541}}{2*1}=\frac{3-\sqrt{541}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+\sqrt{541}}{2*1}=\frac{3+\sqrt{541}}{2} $
| 8x+18+4x−6=180 | | 9x-17=-12x | | y=23,2-2 | | 4.7q+12.73=3.3q-12.75 | | -5-9x=3(-3x+1) | | 3x2-5=-36 | | 187f=4 | | 42=-7(1x-3) | | 2x+24+4x=180,x=26,4x=104,2x=76 | | -68=4(25-2x) | | -6(-2-5z)=222 | | 24+10=c | | 5y+29=7y-11 | | 4(-8+5)=32x=36 | | 4-2(x-5)=x-41 | | −35x+7=1 | | 3(d+5)=-24 | | 2x-7=4(x-12) | | 8-7+4x=6 | | -2d-6=10 | | -36u-40=-15 | | 32x+5=128 | | 7x2−2x+2=−2 | | 3z+6-z=26 | | 5/7=5/x | | 40x=3,600 | | 4(-8+5+32x=36 | | 4x-5+18=93 | | 5(1+-5x)+5(-8x+-2)=-4x+-8x(1*5+-5x*5)+5(-8x+-2)=-4x+-8x(5+-25x)+5(-8x+-2)=-4x+-8x | | 5p+6=-4p-12 | | 28(x+5)=-3(8x+40) | | -8+18=-6c+36 |