If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n-1)=2250
We move all terms to the left:
n(n-1)-(2250)=0
We multiply parentheses
n^2-1n-2250=0
a = 1; b = -1; c = -2250;
Δ = b2-4ac
Δ = -12-4·1·(-2250)
Δ = 9001
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{9001}}{2*1}=\frac{1-\sqrt{9001}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{9001}}{2*1}=\frac{1+\sqrt{9001}}{2} $
| 736-(g-123)=938 | | 3x^2+33x-78=0 | | 9/2x=54= | | -.5x-20=4x-2 | | 2/3x-13=-11 | | 34=n-17 | | 12+10x=26 | | x^2+12x-80=-2 | | 7x-3x=2+14 | | 3(c-6)=3(3c+10) | | Y=6x-3/5 | | x(0.75)=800 | | x(0.75)=10 | | 4x+4=-2+x | | -6x+4=2x+44 | | 7.5(0.75)=x | | X+8=(x+1)+(3x+1)/2 | | x(0.75)=7.5 | | 20x+23=90 | | (a+20)+(2a+10)=180 | | 7x+20+5(x+2)=180 | | 40a+5=35a | | (6+x)x3=24 | | 5-2x=-10+3 | | 9.6=q-7.3 | | 2q=2000-q | | 20+7k=8k+1 | | 3x-10=x+10+4x | | 0.5(3q+87)=1.5q=43.5 | | 4x-20=-160 | | 4x+2x+22=180 | | b/3+-44=-54 |