If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+3)=40
We move all terms to the left:
n(n+3)-(40)=0
We multiply parentheses
n^2+3n-40=0
a = 1; b = 3; c = -40;
Δ = b2-4ac
Δ = 32-4·1·(-40)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*1}=\frac{-16}{2} =-8 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*1}=\frac{10}{2} =5 $
| 3x-150=15 | | 3N=3x5 | | 8x-13+7x-17=0 | | 8/3x-2=(2/3)x-12 | | 3(b-2)-4(2b+510=9 | | 4(u-6)=7u-39 | | n(n+3n)=40 | | x^2-74=7 | | 4(0.5n-3)=n0.25(12-8n) | | 3x+150=15 | | x-7+5x=24 | | 2.3=x/6 | | 3x+150=7 | | 4x-23=14 | | 5x2+1=6× | | (-3x-15)(x+7)=0 | | (2x-6)=4x-20 | | 49x2=121 | | -5v=5v+10 | | 20m=50 | | 8x+14=12x+6 | | -5v=5v | | 50=20m | | 〖10〗^x=3000 | | –5v=5v+10 | | 3(2f+4)=2(3f-6)=f | | X+94+5x=180 | | -3u=-4u+8 | | 4x+128=16x | | −4(1−x)=3(−5+2) | | y+4=3y-10 | | 9z+3z=24 |