n(n+2)+(n+4)=84

Simple and best practice solution for n(n+2)+(n+4)=84 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n+2)+(n+4)=84 equation:



n(n+2)+(n+4)=84
We move all terms to the left:
n(n+2)+(n+4)-(84)=0
We multiply parentheses
n^2+2n+(n+4)-84=0
We get rid of parentheses
n^2+2n+n+4-84=0
We add all the numbers together, and all the variables
n^2+3n-80=0
a = 1; b = 3; c = -80;
Δ = b2-4ac
Δ = 32-4·1·(-80)
Δ = 329
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{329}}{2*1}=\frac{-3-\sqrt{329}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{329}}{2*1}=\frac{-3+\sqrt{329}}{2} $

See similar equations:

| 3x−12=5x−24 | | (4x+5)=12x^2+15x | | 4x+3x=2x+7 | | 4x^2-5=2x^2-3x= | | 5n-3=0 | | 3z^2-5z=2z^2+14= | | 4x+7-2x+8=2x-1 | | 4x+7-2x+8=2x+15 | | 3+15=x+25 | | x^2-200x+9000=0 | | 3+y/2=6y= | | 2x−12=−2 | | 14+3v=56 | | 125-0,25x=50+0,5x | | 3*(4-x)=-24 | | 3·(4-x)=-24 | | 9/3=x+2 | | 9/x=3+2 | | 1+x=9*3 | | 1+x=9x3 | | 5(2x–10)=60 | | 29.2=7.3Xn | | 4x+x=+6-19 | | (4x-5)-(2+3×)=(7×-6) | | 44=4(3a+18) | | (3x+2)(2+2x)=6x+6x2+4+4x=6x2+10x+4 | | 5(p-2)=6 | | 4(x+1)+7x=2x+14 | | 3z^2-5z^2+14=0 | | 4x+17+(7x-12)=180 | | 4•(x+5)=60 | | 90+(3y+18)=180 |

Equations solver categories