If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)+3=43
We move all terms to the left:
n(n+1)+3-(43)=0
We add all the numbers together, and all the variables
n(n+1)-40=0
We multiply parentheses
n^2+n-40=0
a = 1; b = 1; c = -40;
Δ = b2-4ac
Δ = 12-4·1·(-40)
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{161}}{2*1}=\frac{-1-\sqrt{161}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{161}}{2*1}=\frac{-1+\sqrt{161}}{2} $
| j/4+3=7 | | v=4/3*3.14*(2)3 | | 5p-26=19 | | 36-0.0416666667(4x)=27-0.0416666667(3x) | | 2z−4=4 | | 8n-2=6n+9 | | 4x+5=2.8 | | 4K-7+8k=-35 | | 3x(3+2)=4x(5+8) | | 5a+12=42 | | 5a+12=43 | | 8x+56=-96 | | k/11+5=20 | | n/7=-1 | | 5x-1=3/2x+6 | | 2x+2+x-20=180 | | 40-0.0454545455(4x)=30-0.0454545455(3x) | | (3y-10)+77=180 | | 8+2d=7 | | -18=-3t−18=−3t | | v/6+10=19 | | 4e=10=2 | | 40-(1/22)(4x)=30-(1/22)(3x) | | 9(l+2)=3(l-2 | | 3(2x×-5)=4(x+3) | | 5y−y=20 | | 3x–5= | | 2x^2-3x-2x+3=0 | | 7x+27=9 | | x−-4=-6 | | 3=17-k | | x−(-4)=-6 |