If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2-4n-165=0
a = 1; b = -4; c = -165;
Δ = b2-4ac
Δ = -42-4·1·(-165)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-26}{2*1}=\frac{-22}{2} =-11 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+26}{2*1}=\frac{30}{2} =15 $
| a5-13=-84 | | x-21=-46 | | -8x+2=2x-18 | | .06x=650 | | 50x1÷25=25 | | 4x+3-2x=13 | | 50x÷25=25 | | 132/3=n-1 | | 36x^2-60x-25=0 | | 4+2x=12* | | 0,5x-1,5=2,5 | | 5x+17=17*(1-3x) | | 7x+1=3x+13* | | 2×4x-3=x+3 | | 5x-2=23* | | 5k+9=5+3k | | 5x+1=16* | | 2+x/3x=21 | | 5x+5=-10* | | 5(a+4)=2(7a+4) | | 11+2n=4n-3+2 | | 2.6=3.2-0.3x | | 3(5x-8)=15 | | 4x3=x | | 20x+3=40x^2 | | 12x-4(9x20)=320 | | x-0.3=210 | | 6g÷6=2g-18 | | 4(7x-2)=78 | | 3(4+4)+2r+40=2 | | 8-3x=36 | | X-(3x+2)=102 |